Publications

2014

Selenica, Maj-Linda B, Hayk Davtyan, Steven B Housley, Laura J Blair, Anne Gillies, Bryce A Nordhues, Bo Zhang, et al. (2014) 2014. “Epitope Analysis Following Active Immunization With Tau Proteins Reveals Immunogens Implicated in Tau Pathogenesis.”. Journal of Neuroinflammation 11: 152. https://doi.org/10.1186/s12974-014-0152-0.

BACKGROUND: Abnormal tau hyperphosphorylation and its accumulation into intra-neuronal neurofibrillary tangles are linked to neurodegeneration in Alzheimer's disease and similar tauopathies. One strategy to reduce accumulation is through immunization, but the most immunogenic tau epitopes have so far remained unknown. To fill this gap, we immunized mice with recombinant tau to build a map of the most immunogenic tau epitopes.

METHODS: Non-transgenic and rTg4510 tau transgenic mice aged 5 months were immunized with either human wild-type tau (Wt, 4R0N) or P301L tau (4R0N). Each protein was formulated in Quil A adjuvant. Sera and splenocytes of vaccinated mice were collected to assess the humoral and cellular immune responses to tau. We employed a peptide array assay to identify the most effective epitopes. Brain histology was utilized to measure the effects of vaccination on tau pathology and inflammation.

RESULTS: Humoral immune responses following immunization demonstrated robust antibody titers (up to 1:80,000 endpoint titers) to each tau species in both mice models. The number of IFN-γ producing T cells and their proliferation were also increased in splenocytes from immunized mice, indicating an increased cellular immune response, and tau levels and neuroinflammation were both reduced. We identified five immunogenic motifs within either the N-terminal (9-15 and 21-27 amino acids), proline rich (168-174 and 220-228 amino acids), or the C-terminal regions (427-438 amino acids) of the wild-type and P301L tau protein sequence.

CONCLUSIONS: Our study identifies five previously unknown immunogenic motifs of wild-type and mutated (P301L) tau protein. Immunization with both proteins resulted in reduced tau pathology and neuroinflammation in a tau transgenic model, supporting the efficacy of tau immunotherapy in tauopathy.

Blair, Laura J, Jonathan J Sabbagh, and Chad A Dickey. (2014) 2014. “Targeting Hsp90 and Its Co-Chaperones to Treat Alzheimer’s Disease.”. Expert Opinion on Therapeutic Targets 18 (10): 1219-32. https://doi.org/10.1517/14728222.2014.943185.

INTRODUCTION: Alzheimer's disease, characterized by the accumulation of hyperphosphorylated tau and β amyloid (Aβ), currently lacks effective treatment. Chaperone proteins, such as the heat shock protein (Hsp) 90, form macromolecular complexes with co-chaperones, which can regulate tau metabolism and Aβ processing. Although small molecule inhibitors of Hsp90 have been successful at ameliorating tau and Aβ burden, their development into drugs to treat disease has been slow due to the off- and on-target effects of this approach as well as challenges with the pharmacology of current scaffolds. Thus, other approaches are being developed to improve these compounds and to target co-chaperones of Hsp90 in an effort to limit these liabilities.

AREAS COVERED: This article discusses the most current developments in Hsp90 inhibitors including advances in blood-brain barrier permeability, decreased toxicity and homolog-specific small-molecule inhibitors. In addition, we discuss current strategies targeting Hsp90 co-chaperones rather than Hsp90 itself to reduce off-target effects.

EXPERT OPINION: Although Hsp90 inhibitors have proven their efficacy at reducing tau pathology, they have yet to meet with success in the clinic. The development of Hsp90/tau complex-specific inhibitors and further development of Hsp90 co-chaperone-specific drugs should yield more potent, less toxic therapeutics.

2013

Blair, Laura J, Bryce A Nordhues, Shannon E Hill, Matthew Scaglione, John C O’Leary, Sarah N Fontaine, Leonid Breydo, et al. (2013) 2013. “Accelerated Neurodegeneration through Chaperone-Mediated Oligomerization of Tau.”. The Journal of Clinical Investigation 123 (10): 4158-69. https://doi.org/10.1172/JCI69003.

Aggregation of tau protein in the brain is associated with a class of neurodegenerative diseases known as tauopathies. FK506 binding protein 51 kDa (FKBP51, encoded by FKBP5) forms a mature chaperone complex with Hsp90 that prevents tau degradation. In this study, we have shown that tau levels are reduced throughout the brains of Fkbp5-/- mice. Recombinant FKBP51 and Hsp90 synergized to block tau clearance through the proteasome, resulting in tau oligomerization. Overexpression of FKBP51 in a tau transgenic mouse model revealed that FKBP51 preserved the species of tau that have been linked to Alzheimer's disease (AD) pathogenesis, blocked amyloid formation, and decreased tangle load in the brain. Alterations in tau turnover and aggregate structure corresponded with enhanced neurotoxicity in mice. In human brains, FKBP51 levels increased relative to age and AD, corresponding with demethylation of the regulatory regions in the FKBP5 gene. We also found that higher FKBP51 levels were associated with AD progression. Our data support a model in which age-associated increases in FKBP51 levels and its interaction with Hsp90 promote neurotoxic tau accumulation. Strategies aimed at attenuating FKBP51 levels or its interaction with Hsp90 have the potential to be therapeutically relevant for AD and other tauopathies.

O’Leary, John C, Bo Zhang, John Koren, Laura Blair, and Chad A Dickey. (2013) 2013. “The Role of FKBP5 in Mood Disorders: Action of FKBP5 on Steroid Hormone Receptors Leads to Questions about Its Evolutionary Importance.”. CNS & Neurological Disorders Drug Targets 12 (8): 1157-62.

Research on the FKBP5 gene and FKBP51 protein has more than doubled since the discovery that polymorphisms in this gene could alter treatment outcomes and depressive behavior in humans. This coincided with other data suggesting that the stress hormone axis contributes to the development of numerous mental illnesses. As a result, FKBP51 now lies at the heart of the research of many stress related psychiatric disorders, which has led to advances in the understanding of this protein and its role in humans and in animal models. Specifically, FKBP5-/- mice and a naturally existing overexpression of FKBP5 in 3 genera of new world monkeys have helped understand the effects of FKBP5 in vivo. This review will highlight these finding as well as discuss the current evolutionary need for the FKBP5 gene.