Publications

2009

Wang X, Xu W, Kong X, et al. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma.. Respiratory research. 2009;10(1):66. doi:10.1186/1465-9921-10-66

BACKGROUND: Atrial natriuretic peptide (ANP) and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99-126) of pro-atrial natriuretic factor (proANF) and a recombinant peptide, NP73-102 (amino acid 73-102 of proANF) have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD), another N-terminal natriuretic peptide covering amino acids 31-67 of proANF, on acute lung inflammation in a mouse model of allergic asthma.

METHODS: A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2) through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid.

RESULTS: pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation.

CONCLUSION: VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.

2008

Lee D, Mohapatra SS. Chitosan nanoparticle-mediated gene transfer.. Methods in molecular biology (Clifton, N.J.). 2008;433:127-40. doi:10.1007/978-1-59745-237-3_8

Recent advances in genomics and proteomics have led to the evolution of DNA-based therapeutics and the use of gene therapy for treatment of a wide range of human diseases. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics are the major drawbacks of gene therapy. Viral and nonviral gene transfer vectors have been developed to facilitate the cellular internalization and preserve their activity until the successful transgene expression. Chitosan, a natural polysaccharide, is biocompatible and biodegradable. Chitosan has been reported to form nanocomplexes with DNA to protect them against DNase degradation and transfer DNA effectively and safely into cells in culture cell as well as in vivo.

Kong X, Wang X, Xu W, et al. Natriuretic peptide receptor a as a novel anticancer target.. Cancer research. 2008;68(1):249-56. doi:10.1158/0008-5472.CAN-07-3086

The receptor for atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPRA), is expressed in cancer cells, and natriuretic peptides have been implicated in cancers. However, the direct role of NPRA signaling in tumorigenesis remains elusive. Here, we report that NPRA expression and signaling is important for tumor growth. NPRA-deficient mice showed significantly reduced antigen-induced pulmonary inflammation. NPRA deficiency also substantially protected C57BL/6 mice from lung, skin, and ovarian cancers. Furthermore, a nanoparticle-formulated interfering RNA for NPRA attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH(2)-terminal peptide of the ANP prohormone, which down-regulates NPRA expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. The antitumor activity of NP73-102 was in part attributed to apoptosis of tumor cells. Western blot and immunohistochemistry staining indicated that the transcription factor, nuclear factor-kappaB, was inactivated, whereas the level of tumor suppressor retinoblastoma protein was up-regulated in the lungs of NPRA-deficient mice. Furthermore, expression of vascular endothelial growth factor was down-regulated in the lungs of NPRA-deficient mice compared with that in wild-type mice. These results suggest that NPRA is involved in tumor angiogenesis and represents a new target for cancer therapy.

Wang X, Xu W, Mohapatra S, et al. Prevention of airway inflammation with topical cream containing imiquimod and small interfering RNA for natriuretic peptide receptor.. Genetic vaccines and therapy. 2008;6:7. doi:10.1186/1479-0556-6-7

BACKGROUND: Asthma is a complex disease, characterized by reversible airway obstruction, hyperresponsiveness and chronic inflammation. Principle pharmacologic treatments for asthma include bronchodilating beta2-agonists and anti-inflammatory glucocorticosteroids; but these agents do not target the main cause of the disease, the generation of pathogenic Th2 cells. We previously reported reduction in allergic inflammation in mice deficient in the ANP receptor NPRA. Here we determined whether siRNA for natriuretic peptide receptor A (siNPRA) protected against asthma when administered transdermally.

METHODS: Imiquimod cream mixed with chitosan nanoparticles containing either siRNA green indicator (siGLO) or siNPRA was applied to the skin of mice. Delivery of siGLO was confirmed by fluorescence microscopy. The anti-inflammatory activity of transdermal siNPRA was tested in OVA-sensitized mice by measuring airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines.

RESULTS: SiGLO appearing in the lung proved the feasibility of transdermal delivery. In a mouse asthma model, BALB/c mice treated with imiquimod cream containing siNPRA chitosan nanoparticles showed significantly reduced airway hyperresponsiveness, eosinophilia, lung histopathology and pro-inflammatory cytokines IL-4 and IL-5 in lung homogenates compared to controls.

CONCLUSION: These results demonstrate that topical cream containing imiquimod and siNPRA nanoparticles exerts an anti-inflammatory effect and may provide a new and simple therapy for asthma.

Mohapatra SS, Lockey RF. Respiratory syncytial virus infection: from biology to therapy: a perspective.. The World Allergy Organization journal. 2008;1(2):21-8. doi:10.1097/WOX.0b013e31816549a2

Respiratory syncytial virus (RSV) is responsible for significant morbidity and mortality, particularly in infants younger than 18 months and in the elderly. To date, there are few effective treatment options available to prevent or treat RSV infections. Attractive therapeutic strategies include targeting host epithelial adhesion molecules required for RSV infection, enhancing localized cell-mediated immunity, interfering with RSV viral gene expression and developing a multigene DNA vaccine. The most recent data supporting the advantages and limitations of each of these approaches are discussed in detail. Several promising strategies offer hope for safe and effective prophylaxis and treatment of RSV infection.

Shirley SA, Montpetit AJ, Lockey RF, Mohapatra SS. Curcumin prevents human dendritic cell response to immune stimulants.. Biochemical and biophysical research communications. 2008;374(3):431-6. doi:10.1016/j.bbrc.2008.07.051

Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14(+) monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4(+) T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant.

Kong X, Hellermann GR, Zhang W, et al. Chitosan Interferon-gamma Nanogene Therapy for Lung Disease: Modulation of T-Cell and Dendritic Cell Immune Responses.. Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology. 2008;4(3):95-105. doi:10.1186/1710-1492-4-3-95

: The use of chitosan nanoparticles as carriers for expression plasmids represents a major improvement in gene expression technology. We demonstrated previously that treatment with chitosan interferon-gamma (IFN-gamma) plasmid deoxyribonucleic acid (DNA) nanoparticles (chitosan interferon-gamma nanogene [CIN]) led to in situ production of IFN-gamma and a reduction in inflammation and airway reactivity in mice, but the mechanism underlying the immunomodulatory effects of CIN remains unclear. In this report, the effect of CIN treatment on the immune responses of CD8+ T cells and dendritic cells was examined in a BALB/c mouse model of ovalbumin (OVA)-induced allergic asthma. OT1 mice (OVA-T cell receptor [TCR] transgenic) were also used to test the effects of CIN on OVA-specific CD8+ T cells. CIN treatment caused a reduction in IFN-gamma production in a subpopulation of OVA-specific CD8+ T cells cultured in vitro in the presence of OVA. CIN also reduced apoptosis of the CD8+ T cells. Examination of dendritic cells from lung and lymph nodes indicated that CIN treatment decreased their antigen-presenting activity, as evident from the reduction in CD80 and CD86 expression. Furthermore, CIN treatment significantly decreased the number of CD11c+b+ dendritic cells in lymph nodes, suggesting that endogenous IFN-gamma expression may immunomodulate dendritic cell migration and activation. CIN therapy results in a reduction in proinflammatory CD8+ T cells and decreases the number and antigen-presenting activity of dendritic cells.

Mohapatra SS, Boyapalle S. Epidemiologic, experimental, and clinical links between respiratory syncytial virus infection and asthma.. Clinical microbiology reviews. 2008;21(3):495-504. doi:10.1128/CMR.00054-07

Virtually all children experience respiratory syncytial virus (RSV) infection at least once during the first 2 years of life, but only a few develop bronchiolitis and more severe disease requiring hospitalization, usually in the first 6 months of life. Children who recover from RSV-induced bronchiolitis are at increased risk for the development of recurrent wheeze and asthma in later childhood. Recent studies suggest that there is an association between RSV-induced bronchiolitis and asthma within the first decade of life but that this association is not significant after age 13. Despite the considerable progress made in our understanding of several aspects of respiratory viral infections, further work needs to be done to clarify the molecular mechanisms of early interactions between virus and host cell and the role of host gene products in the infection process. This review provides a critical appraisal of the literature in epidemiology and experimental research which links RSV infection to asthma. Studies to date demonstrate that there is a significant association between RSV infection and childhood asthma and that preventing severe primary RSV infections can decrease the risk of childhood asthma.