Multipotent stem cells from trabecular meshwork become phagocytic TM cells.

Du, Yiqin, Danny S Roh, Mary M Mann, Martha L Funderburgh, James L Funderburgh, and Joel S Schuman. 2012. “Multipotent Stem Cells from Trabecular Meshwork Become Phagocytic TM Cells.”. Investigative Ophthalmology & Visual Science 53 (3): 1566-75.

Abstract

PURPOSE: To isolate and characterize stem cells from human trabecular meshwork (TM) and to investigate the potential of these stem cells to differentiate into TM cells.

METHODS: Human trabecular meshwork stem cells (TMSCs) were isolated as side population cells by fluorescence-activated cell sorting or isolated by clonal cultures. Passaged TMSCs were compared with primary TM cells by immunostaining and quantitative RT-PCR. TMSC purity was assessed by flow cytometry and TMSC multipotency was examined by induction of neural cells, adipocytes, keratocytes, or TM cells. Differential gene expression was detected by quantitative RT-PCR, immunostaining, and immunoblotting. TM cell function was evaluated by phagocytic assay using inactivated Staphylococcus aureus bioparticles.

RESULTS: Side population and clonal isolated cells expressed stem cell markers ABCG2, Notch1, OCT-3/4, AnkG, and MUC1 but not TM markers AQP1, MGP, CHI3L1, or TIMP3. Passaged TMSCs are a homogeneous population with >95% cells positive to CD73, CD90, CD166, or Bmi1. TMSCs exhibited multipotent ability of differentiation into a variety of cell types with expression of neural markers neurofilament, β-tubulin III, GFAP; or keratocyte-specific markers keratan sulfate and keratocan; or adipocyte markers ap2 and leptin. TMSC readily differentiated into TM cells with phagocytic function and expression of TM markers AQP1, CHI3L1, and TIMP3.

CONCLUSIONS: TMSCs, isolated as side population or as clones, express specific stem cell markers, are homogeneous and multipotent, with the ability to differentiate into phagocytic TM cells. These cells offer a potential for development of a novel stem cell-based therapy for glaucoma.

Last updated on 06/18/2025
PubMed