Plasminogen activator inhibitor (PAI)-1 promotes development of asthma. PAI-1 mRNA and protein are markedly induced in activated mast cells (MCs), a major effector cell type in asthma. However, regulatory mechanisms of PAI-1 transcription in MCs are unknown. We present first evidence that PAI-1 is transcriptionally regulated in human MCs (hMCs). In addition to three enhancer regions, we demonstrated that the E-box at -566 bp to -561 bp is the negative regulatory element, and the specific and constitutive binding of the upstream stimulating factor-1 to this E-box is the key mechanism of the negative regulation of PAI-1 expression in hMCs.
Publications
2007
2006
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis and its activation during T cell receptor stimulation has recently been reported. In this study, we examined the role of AMPK in interleukin (IL)-2 production in T cells. Inhibition of AMPK by compound C, a specific inhibitor of AMPK or small interfering RNA of AMPKalpha1 suppressed IL-2 production in Jurkat T cells and peripheral blood lymphocytes stimulated with PMA plus ionomycin (PMA/Io) or with monoclonal anti-CD3 plus anti-CD28. We then showed that AMPK inhibition reduced PMA/Io-induced IL-2 mRNA expression and IL-2 promoter activation. Moreover, inhibition of AMPK suppressed transcriptional activation of NF-AT and AP-1, but not NF-kappaB, in PMA/Io-activated Jurkat cells. Finally, we found that compound C inhibited PMA/Io-induced phosphorylation of p38, JNK, and GSK-3beta but not of ERK. These results suggest that AMPK mediates IL-2 production by regulating NF-AT and AP-1activation during T cell stimulation.
Adenosine is an endogenous nucleoside that regulates many processes, including inflammatory responses, through activation of its receptors. Adenosine receptors have been reported to be expressed in microglia, which are major immune cells of brain, yet little is known about the role of adenosine receptors in microglial cytokine production. Thus, we investigated the effect of adenosine and adenosine A3 receptor ligands on LPS-induced tumor necrosis factor (TNF-alpha) production and its molecular mechanism in mouse BV2 microglial cells. Adenosine and Cl-IB-MECA, a specific adenosine A3 receptor agonist, suppressed LPS-induced TNF-alpha protein and mRNA levels. Moreover, MRS1523, a selective A3 receptor antagonist, blocked suppressive effects of both adenosine and Cl-IB-MECA on TNF-alpha. We further examined the effect of adenosine on signaling molecules, such as PI 3-kinase, Akt, p38, ERK1/2, and NF-kappaB, which are involved in the regulation of inflammatory responses. Adenosine inhibited LPS-induced phosphatidylinositol (PI) 3-kinase activation and Akt phosphorylation, whereas it had no effect on the phosphorylation of p38 and ERK1/2. We also found that adenosine as well as Cl-IB-MECA inhibited LPS-induced NF-kappaB DNA binding and luciferase reporter activity. Taken together, these results suggest that adenosine A3 receptor activation suppresses TNF-alpha production by inhibiting PI 3-kinase/Akt and NF-kappaB activation in LPS-treated BV2 microglial cells.
2005
We examined the effect of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), the dephosphorylated form of AICA ribotide (also termed "ZMP"), an intermediate of purine biosynthesis, on interleukin (IL)-2 production in T cells. AICAR inhibited IL-2 production in Jurkat T cells and peripheral blood lymphocytes activated with PMA plus ionomycin (PMA/Io) or with monoclonal anti-CD3 plus anti-CD28. Pretreatment with 5'-iodotubercidin, an adenosine kinase inhibitor, enhanced AICAR suppression of IL-2 production, suggesting that AICAR, not ZMP, is responsible for IL-2 suppression. We then showed that AICAR inhibited PMA/Io-induced IL-2 mRNA expression and IL-2 promoter activation. AICAR inhibited DNA binding and transcriptional activation of NF-AT and to a lesser extent AP-1, but not NF-kappaB, in PMA/Io-activated Jurkat cells. Finally, we found that AICAR inhibited PMA/Io-induced phosphorylation of GSK-3 but not phosphorylation of ERK1/2, p38, and JNK. These results suggest that AICAR exerts its immunosuppressive effect in activated Jurkat cells by inhibiting GSK-3 phosphorylation and NF-AT activation.
2004
We investigated regulation of various signal transduction pathways during oxidative stresses in the kidney of young and aged rats. Menadione-induced regulation of molecules in PI 3-kinase, MAPK, and AMPK pathways was determined in the young (2 months) and old (24 months) groups. PI 3-kinase activity and Akt phosphorylation were significantly reduced in the old compared with the young. PTEN tumor suppressor was also lower in its expression and phosphorylation levels in the old. Response of the molecules in PI 3-kinase pathway to menadione was minimized. In contrast, over 5-fold induction of ERK1/2 phosphorylation by menadione was observed in both groups. On the other hand, basal activities as well as menadione-induced activities of JNK1 and AMPK were higher in the old than in the young. While p27(Kip1), p53, and p21(Waf1) were slightly increased by menadione in both groups, the basal induction level in the old was considerably higher. In conclusion, the results suggest that the age-related down-regulation of PI 3-kinase/Akt pathway and up-regulation of JNK1, AMPK, and p53 pathways may be responsible for the increased susceptibility to oxidative stress.
5-Aminoimidazole-4-carboxamide riboside (AICAR) is an adenosine analog and a widely used activator of AMP-activated protein kinase (AMPK). We examined the effect of AICAR on LPS-induced TNF-alpha production in RAW 264.7 and peritoneal macrophages and its molecular mechanism in RAW 264.7 macrophages. Treatment with AICAR inhibited LPS-induced increases in TNF-alpha mRNA and protein levels in these cells. AICAR or LPS did not alter the AMPK activity as well as the phosphorylations of AMPK alpha (Thr172) and ACC (Ser79). Moreover, an adenosine kinase inhibitor 5'-iodotubercidin enhanced the suppressive effect of AICAR on TNF-alpha levels. These results suggest that the effect of AICAR on TNF-alpha suppression in RAW 264.7 cells is independent of AMPK activation. In addition, an adenosine receptor antagonist 8-SPT had no effect on AICAR-induced suppression of TNF-alpha levels. Finally, we observed that AICAR inhibited LPS-induced activation of PI 3-kinase and Akt, whereas it had no effect on the activation of p38 and ERK1/2. Taken together, these results suggest that the anti-inflammatory action of AICAR in RAW 264.7 macrophages is independent of AMPK activation and is associated with inhibition of LPS-induced activation of PI 3-kinase/Akt pathway.
2003
2001
Oxidative stress plays a critical role in cardiac injuries during ischemia/reperfusion. Insulin-like growth factor-1 (IGF-1) promotes cell survival in a number of cell types, but the effect of IGF-1 on the oxidative stress has not been elucidated in cardiac muscle cells. Therefore, we examined the role of IGF-1 signaling pathway in cell survival against H2O2-induced apoptosis in H9c2 cardiac myoblasts. H2O2 treatment induced apoptosis in H9c2 cells, and pretreatment of cells with IGF-1 suppressed apoptotic cell death. The antiapoptotic effect of IGF-1 was blocked by LY294002 (an inhibitor of phosphatidylinositol 3-kinase) and by PD98059 (an inhibitor of extracellular signal-regulated kinase (ERK)). The protective effect of IGF-1 was also blocked by rapamycin (an inhibitor of p70 S6 kinase). Furthermore, H9c2 cells stably transfected with constitutively active PI 3-kinase (H9c2-p110*) and Akt (H9c2-Gag-Akt) constructs were more resistant to H2O2 cytotoxicity than control cells. Although H2O2 activates both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), IGF-1 inhibited only JNK activation. Activated PI 3-kinase (H9c2-p110*) and pretreatment of cells with IGF-1 down-regulated Bax protein levels compared to control cells. Taken together, our results suggest that IGF-1 transmits a survival signal against oxidative stress-induced apoptosis in H9c2 cells via PI 3-kinase and ERK-dependent pathways and the protective effect of IGF-1 is associated with the inhibition of JNK activation and Bax expression.