Natriuretic peptide receptor A (NPRA), the signaling receptor for the cardiac hormone, atrial natriuretic peptide (ANP), is expressed abundantly in inflamed/injured tissues and tumors. NPRA deficiency substantially decreases tissue inflammation and inhibits tumor growth. However, the precise mechanism of NPRA function and whether it links inflammation and tumorigenesis remains unknown. Since both injury repair and tumor growth require stem cell recruitment and angiogenesis, we examined the role of NPRA signaling in tumor angiogenesis as a model of tissue injury repair in this study. In in vitro cultures, aortas from NPRA-KO mice show significantly lower angiogenic response compared to wild-type counterparts. The NPRA antagonist that decreases NPRA expression, inhibits lipopolysaccharide-induced angiogenesis. The reduction in angiogenesis correlates with decreased expression of vascular endothelial growth factor and chemokine (C-X-C motif) receptor 4 (CXCR4) implicating a cell recruitment defect. To test whether NPRA regulates migration of cells to tumors, mesenchymal stem cells (MSCs) were administered i.v., and the results showed that MSCs fail to migrate to the tumor microenvironment in NPRA-KO mice. However, coimplanting tumor cells with MSCs increases angiogenesis and tumorigenesis in NPRA-KO mice, in part by promoting expression of CXCR4 and its ligand, stromal cell-derived factor 1α. Taken together, these results demonstrate that NPRA signaling regulates stem cell recruitment and angiogenesis leading to tumor growth. Thus, NPRA signaling provides a key linkage between inflammation and tumorigenesis, and NPRA may be a target for drug development against cancers and tissue injury repair.
Publications
2013
The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment.
2012
INTRODUCTION: Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs.
METHODS: In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay.
RESULTS: EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control.
CONCLUSION: These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH.
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood-brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.
2011
BACKGROUND: Atrial natriuretic peptide (ANP) is an important endogenous hormone that controls inflammation and immunity by acting on dendritic cells (DCs); however, the mechanism remains unclear.
OBJECTIVE: We analyzed the downstream signaling events resulting from the binding of ANP to its receptor, NPRA, and sought to determine what aspects of this signaling modulate DC function.
METHODS: We utilized the inhibitory peptide, NP73-102, to block NPRA signaling in human monocyte-derived DCs (hmDCs) and examined the effect on DC maturation and induced immune responses. The potential downstream molecules and interactions among these molecules involved in NPRA signaling were identified by immunoprecipitation and immunoblotting. Changes in T cell phenotype and function were determined by flow cytometry and BrdU proliferation ELISA. To determine if adoptively transferred DCs could alter the in vivo immune response, bone marrow-derived DCs from wild-type C57BL/6 mice were incubated with ovalbumin (OVA) and injected i.v. into C57BL/6 NPRA-/- knockout mice sensitized and challenged with OVA. Lung sections were stained and examined for inflammation and cytokines were measured in bronchoalveolar lavage fluid collected from parallel groups of mice.
RESULTS: Inhibition of NPRA signaling in DCs primes them to induce regulatory T cells. Adoptive transfer of wild type DCs into NPRA-/- mice reverses the attenuation of lung inflammation seen in the NPRA-knockout model. NPRA is associated with TLR-2, SOCS3 and STAT3, and inhibiting NPRA alters expression of IL-6, IL-10 and TGF-β, but not IL-12.
CONCLUSIONS: Modulation of NPRA signaling in DCs leads to immune tolerance and TLR2 and SOCS3 are involved in this induction.
BACKGROUND: The receptor for the cardiac hormone atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPRA), is expressed in cancer cells, and natriuretic peptides have been implicated in cancers. However, the direct role of NPRA signaling in prostate cancer remains unclear.
RESULTS: NPRA expression was examined by western blotting, RT-PCR and immunohistochemistry. NPRA was downregulated by transfection of siRNA, shRNA and NPRA inhibitor (iNPRA). Antitumor efficacy of iNPRA was tested in mice using a TRAMP-C1 xenograft. Here, we demonstrated that NPRA is abundantly expressed on tumorigenic mouse and human prostate cells, but not in nontumorigenic prostate epithelial cells. NPRA expression showed positive correlation with clinical staging in a human PCa tissue microarray. Down-regulation of NPRA by siNPRA or iNPRA induced apoptosis in PCa cells. The mechanism of iNPRA-induced anti-PCa effects was linked to NPRA-induced expression of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine over-expressed in PCa and significantly reduced by siNPRA. Prostate tumor cells implanted in mice deficient in atrial natriuretic peptide receptor A (NPRA-KO) failed to grow, and treatment of TRAMP-C1 xenografts with iNPRA reduced tumor burden and MIF expression. Using the TRAMP spontaneous PCa model, we found that NPRA expression correlated with MIF expression during PCa progression.
CONCLUSIONS: Collectively, these results suggest that NPRA promotes PCa development in part by regulating MIF. Our findings also suggest that NPRA is a potential prognostic marker and a target for PCa therapy.
OBJECTIVE: This study analyzed a relationship between prenatal mood states and serologic evidence of immune response to Toxoplasma gondii. A secondary aim was to determine whether thyroid peroxidase autoantibody status was related to T gondii status.
STUDY DESIGN: Pregnant women (n = 414) were measured at 16-25 weeks' gestation with demographic and mood questionnaires and a blood draw. All plasma samples were analyzed for thyroid peroxidase and T gondii immunoglobulin G, tryptophan, kynurenine, and neopterin. T gondii serotypes were also measured in the women who were T gondii positive. Cytokines were available on a subset (n = 142).
RESULTS: Women with serologic evidence of exposure to T gondii (n = 44) showed positive correlations between immunoglobulin G levels and the Profile of Mood States depression and anxiety subscales. Plasma tumor necrosis factor-α was higher in women who were positive for T gondii. Serotypes were type I (27%), type II (31%), and unclassified (42%, which shows intermediate levels of reactivity). The depression and anxiety scores were highest in type I, but this was not significant. The Profile of Mood States vigor score was lowest in type II, compared with the type I or unclassified groups.
CONCLUSION: Higher T gondii immunoglobulin G titers in infected women were related to anxiety and depression during pregnancy. Subclinical reactivation of T gondii or immune responses to T gondii may worsen mood in pregnant women.
BACKGROUND: Traumatic brain injury (TBI) evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics.
METHODS: In this report, we used a rat lateral fluid percussion impact (LFPI) model of TBI to characterize neurodegeneration, apoptosis and alterations in pro-inflammatory mediators at two time points within the secondary injury phase. Brain histopathology was evaluated by fluoro-jade (FJ) staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, polymerase chain reaction (qRT PCR), enzyme linked immunosorbent assay (ELISA) and immunohistochemistry were employed to evaluate the CCL20 gene expression in different tissues.
RESULTS: Histological analysis of neurodegeneration by FJ staining showed mild injury in the cerebral cortex, hippocampus and thalamus. TUNEL staining confirmed the presence of apoptotic cells and CD11b+ microglia indicated initiation of an inflammatory reaction leading to secondary damage in these areas. Analysis of spleen mRNA by PCR microarray of an inflammation panel led to the identification of CCL20 as an important pro-inflammatory signal upregulated 24 h after TBI. Although, CCL20 expression was observed in spleen and thymus after 24 h of TBI, it was not expressed in degenerating cortex or hippocampal neurons until 48 h after insult. Splenectomy partially but significantly decreased the CCL20 expression in brain tissues.
CONCLUSION: These results demonstrate that the systemic inflammatory reaction to TBI starts earlier than the local brain response and suggest that spleen- and/ or thymus-derived CCL20 might play a role in promoting neuronal injury and central nervous system inflammation in response to mild TBI.
2010
Allergen immunotherapy (IT) is a proven approach for treating allergic rhinitis and allergic asthma that has been practiced since 1911 and has undergone significant development in the past two decades. As currently practiced, IT involves subcutaneous or sublingual administration of allergens, both methods of which have been extensively investigated. In addition to allergen IT, a number of additional nonspecific IT approaches are being used or are in phase II/phase III clinical trials, which may be available in clinics within the next one to three years. Such therapies include anti-IgE antibodies and the soluble IL-4 receptor. Other experimental IT approaches are at the preclinical research stage and may proceed to clinical trials and the clinic within the next five to ten years. This review discusses the pros and cons of recent developments in both currently practiced and experimental IT approaches.