Publications

2024

Alcohol use disorder (AUD) is a chronic relapsing disease that is deleterious at individual, familial, and societal levels. Although AUD is one of the highest preventable causes of death in the USA, therapies for the treatment of AUD are not sufficient given the heterogeneity of the disorder and the limited number of approved medications. To provide better pharmacological strategies, it is important to understand the neurological underpinnings of AUD. Evidence implicates the endogenous dynorphin (DYN)/κ-opioid receptor (KOR) system recruitment in dysphoric and negative emotional states in AUD to promote maladaptive behavioral regulation. The nucleus accumbens shell (AcbSh), mediating motivational and emotional processes that is a component of the mesolimbic dopamine system and the extended amygdala, is an important site related to alcohol's reinforcing actions (both positive and negative) and neuroadaptations in the AcbSh DYN/KOR system have been documented to induce maladaptive symptoms in AUD. We have previously shown that in other nodes of the extended amygdala, site-specific KOR antagonism can distinguish different symptoms of alcohol dependence and withdrawal. In the current study, we examined the role of the KOR signaling in the AcbSh of male Wistar rats in operant alcohol self-administration, measures of negative affective-like behavior, and physiological symptoms during acute alcohol withdrawal in alcohol-dependence. To induce alcohol dependence, rats were exposed to chronic intermittent ethanol vapor for 14 h/day for three months, during which stable escalation of alcohol self-administration was achieved and pharmacological AcbSh KOR antagonism ensued. The results showed that AcbSh KOR antagonism significantly reduced escalated alcohol intake and negative affective-like states but did not alter somatic symptoms of withdrawal. Understanding the relative contribution of these different drivers is important to understand and inform therapeutic efficacy approaches in alcohol dependence and further emphasis the importance of the KOR/DYN system as a target for AUD therapeutics.

2023

Lepreux G, Shinn GE, Wei G, et al. Recapitulating phenotypes of alcohol dependence via overexpression of Oprk1 in the ventral tegmental area of non-dependent TH::Cre rats.. Neuropharmacology. 2023;228:109457. doi:10.1016/j.neuropharm.2023.109457

The dynorphin (DYN)/kappa-opioid receptor (KOR) system is involved in dysphoria and negative emotional states. Dysregulation of KOR function promotes maladaptive behavioral regulation during withdrawal associated with alcohol dependence. Mesolimbic dopaminergic (DA) projections from the ventral tegmental area (VTA) innervate the extended amygdala circuitry and presynaptic KORs attenuate DA in these regions leading to an excessive alcohol consumption and negative affective-like behavior, whereas mesocortical KOR-regulated DA projections have been implicated in executive function and decision-making. Thus, the neuroadaptations occurring in DYN/KOR systems are important aspects to consider for the development of personalized therapeutic solutions. Herein, we study the contribution of the VTA DA neuron Oprk1 (KOR gene) in excessive alcohol consumption, negative emotional state, and executive function. To do so, Oprk1 mRNA expression and KOR function were characterized to confirm alcohol dependence-induced dysregulation in the VTA. Then, a transgenic Cre-Lox rat model (male and female TH::Cre rats) was used to allow for conditional and inducible overexpression of Oprk1 in VTA DA neurons. The effect of this overexpression was evaluated on operant alcohol self-administration, negative emotional states, and executive function. We found that VTA Oprk1 overexpression recapitulates some phenotypes of alcohol dependence including escalated alcohol self-administration and depressive-like behavior. However, working memory performance was not impacted following VTA Oprk1 overexpression in TH::Cre rats. This supports the hypothesis that dysregulated KOR signaling within the mesolimbic DA system is an important contributor to symptoms of alcohol dependence and shows that understanding Oprk1-mediated contributions to alcohol use disorder (AUD) should be an important future goal.

2022

Wei G, Sirohi S, Walker BM. Dysregulated kappa-opioid receptors in the medial prefrontal cortex contribute to working memory deficits in alcohol dependence.. Addiction biology. 2022;27(2):e13138. doi:10.1111/adb.13138

Impaired working memory is one symptom contributing to compromised executive function in alcohol use disorder (AUD). Dysregulation of cortical dynorphin (DYN) and κ-opioid receptors (KORs) has been implicated in alcohol dependence-induced impairment in executive function. The present experiments test the hypothesis that dysregulated medial prefrontal cortex (mPFC) KORs contribute to impaired working memory in alcohol dependence. Alcohol dependence was induced in male Wistar rats via 4 months of intermittent ethanol vapor exposure prior to training/testing in an mPFC-dependent working memory task (delayed nonmatching-to-sample task; DNMST). mPFC KOR function in alcohol-naïve rats was compared with that of alcohol-dependent and nondependent rats using a DYN A-stimulated [35S ]GTPγS coupling assay. A functional role for mPFC KORs in the regulation of working memory was assessed via intra-mPFC infusions of a KOR agonist prior to assessment in the DNMST, and the contribution of mPFC KORs to compromised working memory in dependence was assessed via mPFC infusions of the KOR antagonist norbinaltorphimine (nor-BNI). In alcohol-dependent rats, impaired performance in the DNMST confirmed compromised working memory. Furthermore, DYN A-stimulated mPFC KOR function was pathologically increased in alcohol-dependent rats compared with nondependent and alcohol-naïve rats. Additionally, mPFC KOR involvement in working memory was functionally confirmed by intra-mPFC KOR agonist-induced deficits in DNMST performance. Importantly, alcohol dependence-induced impairment in the DNMST was ameliorated by intra-mPFC KOR antagonism. Regulation of working memory by mPFC KORs and alcohol dependence-induced dysregulation of mPFC KOR function identify a novel therapeutic target to treat AUD-related symptoms of working memory impairment.

2020

Go BS, Sirohi S, Walker BM. The role of matrix metalloproteinase-9 in negative reinforcement learning and plasticity in alcohol dependence.. Addiction biology. 2020;25(2):e12715. doi:10.1111/adb.12715

A role for matrix metalloproteinases (MMPs) in plasticity-dependent learning has been established. MMPs degrade the extracellular matrix (ECM) when synaptic reorganization is warranted. Previously, we showed that escalation of alcohol self-administration is a learned plasticity-dependent process that requires an intact MMP system. To identify the MMP subtypes within specific brain regions that are associated with plasticity underlying the negative reinforcing effects of alcohol (as measured by escalated alcohol self-administration) during acute withdrawal in alcohol dependence, male Wistar rats were trained to self-administer alcohol in an operant paradigm, subjected to one month of intermittent alcohol vapor exposure to induce alcohol dependence and then allowed to self-administer alcohol during repeated acute withdrawal self-administration sessions. Subsequently, rat brains were extracted after initial or stable escalated alcohol self-administration phases of acute withdrawal and analyzed by immunoblot to detect MMP-2, -3, and -9 levels in the anterior cingulate cortex (ACC), bed nucleus of the stria terminalis, central amygdala (CeA), hippocampus, and nucleus accumbens (NAc). The results showed that MMP-9 expression in the CeA and NAc of alcohol-dependent rats was increased, however, MMP-9 expression in the ACC was decreased during negative reinforcement learning. Subsequently, the importance of plasticity mediated by MMP-9 in escalated alcohol self-administration during acute withdrawal was functionally assessed through site-specific intra-CeA MMP-9 inhibition during repeated acute withdrawal self-administration sessions. MMP-9 inhibition prevented acute withdrawal-induced escalation of alcohol self-administration in a manner that was not confounded by locomotor effects or a permanent inability to learn about the negative reinforcing effects of alcohol.

2019

Massaly N, Copits BA, Wilson-Poe AR, et al. Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System.. Neuron. 2019;102(3):564-573.e6. doi:10.1016/j.neuron.2019.02.029

Negative affective states affect quality of life for patients suffering from pain. These maladaptive emotional states can lead to involuntary opioid overdose and many neuropsychiatric comorbidities. Uncovering the mechanisms responsible for pain-induced negative affect is critical in addressing these comorbid outcomes. The nucleus accumbens (NAc) shell, which integrates the aversive and rewarding valence of stimuli, exhibits plastic adaptations in the presence of pain. In discrete regions of the NAc, activation of the kappa opioid receptor (KOR) decreases the reinforcing properties of rewards and induces aversive behaviors. Using complementary techniques, we report that in vivo recruitment of NAc shell dynorphin neurons, acting through KOR, is necessary and sufficient to drive pain-induced negative affect. Taken together, our results provide evidence that pain-induced adaptations in the kappa opioid system within the NAc shell represent a functional target for therapeutic intervention that could circumvent pain-induced affective disorders. VIDEO ABSTRACT.

2018

Erikson CM, Wei G, Walker BM. Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis.. Neuropharmacology. 2018;140:162-173. doi:10.1016/j.neuropharm.2018.07.034

There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.

2017

2016

Kissler JL, Walker BM. Dissociating Motivational From Physiological Withdrawal in Alcohol Dependence: Role of Central Amygdala κ-Opioid Receptors.. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2016;41(2):560-7. doi:10.1038/npp.2015.183

Chronic intermittent alcohol vapor exposure leads to increased dynorphin (DYN) A-like peptide expression and heightened kappa-opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA) and these neuroadaptive responses differentiate alcohol-dependent from non-dependent phenotypes. Important for therapeutic development efforts is understanding the nature of the stimulus that drives dependence-like phenotypes such as escalated alcohol self-administration. Accordingly, the present study examined the impact of intra-CeA KOR antagonism on escalated operant alcohol self-administration and physiological withdrawal symptoms during acute withdrawal and protracted abstinence in rats previously exposed to chronic intermittent alcohol vapor. Following operant training, rats were implanted with intra-CeA guide cannula and exposed to long-term intermittent alcohol vapor exposure that resulted in escalated alcohol self-administration and elevated physiological withdrawal signs during acute withdrawal. Animals received intra-CeA infusions of the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 2, 4, or 6 μg) prior to operant alcohol self-administration sessions and physiological withdrawal assessment during acute withdrawal and protracted abstinence. The results indicated that site-specific KOR antagonism in the CeA ameliorated escalated alcohol self-administration during both acute withdrawal and protracted abstinence test sessions, whereas KOR antagonism had no effect on physiological withdrawal scores at either time point. These results dissociate escalated alcohol self-administration from physiological withdrawal symptoms in relation to KOR signaling in the CeA and help clarify the nature of the stimulus that drives escalated alcohol self-administration during acute withdrawal and protracted abstinence.

Sirohi S, Aldrich J V, Walker BM. Species differences in the effects of the κ-opioid receptor antagonist zyklophin.. Alcohol (Fayetteville, N.Y.). 2016;51:43-9. doi:10.1016/j.alcohol.2015.11.012

We have shown that dysregulation of the dynorphin/kappa-opioid receptor (DYN/KOR) system contributes to escalated alcohol self-administration in alcohol dependence and that KOR antagonists with extended durations of action selectively reduce escalated alcohol consumption in alcohol-dependent animals. As KOR antagonism has gained widespread attention as a potential therapeutic target to treat alcoholism and multiple neuropsychiatric disorders, we tested the effect of zyklophin (a short-acting KOR antagonist) on escalated alcohol self-administration in rats made alcohol-dependent using intermittent alcohol vapor exposure. Following dependence induction, zyklophin was infused centrally prior to alcohol self-administration sessions and locomotor activity tests during acute withdrawal. Zyklophin did not impact alcohol self-administration or locomotor activity in either exposure condition. To investigate the neurobiological basis of this atypical effect for a KOR antagonist, we utilized a κ-, μ-, and δ-opioid receptor agonist-stimulated GTPyS coupling assay to examine the opioid receptor specificity of zyklophin in the rat brain and mouse brain. In rats, zyklophin did not affect U50488-, DAMGO-, or DADLE-stimulated GTPyS coupling, whereas the prototypical KOR antagonist nor-binaltorphimine (norBNI) attenuated U50488-induced stimulation in the rat brain tissue at concentrations that did not impact μ- and δ-receptor function. To reconcile the discrepancy between the present rat data and published mouse data, comparable GTPyS assays were conducted using mouse brain tissue; zyklophin effects were consistent with KOR antagonism in mice. Moreover, at higher concentrations, zyklophin exhibited agonist properties in rat and mouse brains. These results identify species differences in zyklophin efficacy that, given the rising interest in the development of short-duration KOR antagonists, should provide valuable information for therapeutic development efforts.

2015

Sirohi S, Walker BM. Maturational alterations in constitutive activity of medial prefrontal cortex kappa-opioid receptors in Wistar rats.. Journal of neurochemistry. 2015;135(4):659-65. doi:10.1111/jnc.13279

Opioid receptors can display spontaneous agonist-independent G-protein signaling (basal signaling/constitutive activity). While constitutive κ-opioid receptor (KOR) activity has been documented in vitro, it remains unknown if KORs are constitutively active in native systems. Using [(35) S] guanosine 5'-O-[gamma-thio] triphosphate coupling assay that measures receptor functional state, we identified the presence of medial prefrontal cortex KOR constitutive activity in young rats that declined with age. Furthermore, basal signaling showed an age-related decline and was insensitive to neutral opioid antagonist challenge. Collectively, the present data are first to demonstrate age-dependent alterations in the medial prefrontal cortex KOR constitutive activity in rats and changes in the constitutive activity of KORs can differentially impact KOR ligand efficacy. These data provide novel insights into the functional properties of the KOR system and warrant further consideration of KOR constitutive activity in normal and pathophysiological behavior. Opioid receptors exhibit agonist-independent constitutive activity; however, kappa-opioid receptor (KOR) constitutive activity has not been demonstrated in native systems. Our results confirm KOR constitutive activity in the medial prefrontal cortex (mPFC) that declines with age. With the ability to presynaptically inhibit multiple neurotransmitter systems in the mPFC, maturational or patho-logical alterations in constitutive activity could disrupt corticofugal glutamatergic pyramidal projection neurons mediating executive function. Regulation of KOR constitutive activity could serve as a therapeutic target to treat compromised executive function.