Publications

2021

Long-chain fatty acid oxidation disorders (LC-FAOD) are autosomal recessive conditions that impair conversion of long-chain fatty acids into energy, leading to significant clinical symptoms. Triheptanoin is a highly purified, 7-carbon chain triglyceride approved in the United States as a source of calories and fatty acids for treatment of pediatric and adult patients with molecularly confirmed LC-FAOD. CL202 is an open-label, long-term extension study evaluating triheptanoin (Dojolvi) safety and efficacy in patients with LC-FAOD. Patients rolled over from the CL201 triheptanoin clinical trial (rollover); were triheptanoin-naïve (naïve); or had participated in investigator-sponsored trials/expanded access programs (IST/other). Results focus on rollover and naïve groups, as pretreatment data allow comparison. Primary outcomes were annual rate and duration of major clinical events (MCEs; rhabdomyolysis, hypoglycemia, and cardiomyopathy events). Seventy-five patients were enrolled (24 rollover, 20 naïve, 31 IST/other). Mean study duration was 23.0 months for rollover, 15.7 months for naïve, and 34.7 months for IST/other. In the rollover group, mean annualized MCE rate decreased from 1.76 events/year pre-triheptanoin to 0.96 events/year with triheptanoin (P = .0319). Median MCE duration was reduced by 66%. In the naïve group, median annualized MCE rate decreased from 2.33 events/year pre-triheptanoin to 0.71 events/year with triheptanoin (P = .1072). Median MCE duration was reduced by 80%. The most common related adverse events (AEs) were diarrhea, abdominal pain/discomfort, and vomiting, most mild to moderate. Three patients had serious AEs (diverticulitis, ileus, rhabdomyolysis) possibly related to drug; all resolved. Two patients had AEs leading to death; neither drug related. Triheptanoin reduced rate and duration of MCEs. Safety was consistent with previous observations.

2020

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.

2019

LClonazepam undergoes nitroreduction to 7-amino-clonazepam via CYP3A4/5, followed by acetylation to 7-acetamido-clonazepam via NAT2 enzyme. While no pharmacological activity is attributed to the metabolites of clonazepam, 7-amino-clonazepam has some affinity for the benzodiazepine receptor as a partial agonist for the gamma aminobutyric acid-A receptor and can compete with clonazepam. Interindividual variability in the incidence of adverse events in patients may, in part, be attributable to differences in clonazepam metabolism. Here, we report on a case of a 70-year-old Caucasian female with insomnia and difficulty weaning off long-term use of clonazepam suggesting that a slow acetylator phenotype contributing to patient's presentation. This hypothesis was confirmed by NAT2 gene sequencing. NAT2 genotyping may play a role in guiding clonazepam therapy.

Long-chain fatty acid oxidation disorders (LC-FAOD) are rare disorders characterized by acute crises of energy metabolism and severe energy deficiency that may present with cardiomyopathy, hypoglycemia, and/or rhabdomyolysis, which can lead to frequent hospitalizations and early death. An open-label Phase 2 study evaluated the efficacy of UX007, an investigational odd-carbon medium-chain triglyceride, in 29 subjects with severe LC-FAOD. UX007 was administered over 78 weeks at a target dose of 25-35% total daily caloric intake (mean 27.5%). The frequency and duration of major clinical events (hospitalizations, emergency room visits, and emergency home interventions due to rhabdomyolysis, hypoglycemia, and cardiomyopathy) occurring during 78 weeks of UX007 treatment was compared with the frequency and duration of events captured retrospectively from medical records for 78 weeks before UX007 initiation. The mean annualized event rates decreased from 1.69 to 0.88 events/year following UX007 initiation (p = 0.021; 48.1% reduction). The mean annualized duration rate decreased from 5.96 to 2.96 days/year (p = 0.028; 50.3% reduction). Hospitalizations due to rhabdomyolysis, the most common event, decreased from 1.03 to 0.63 events/year (p = 0.104; 38.7% reduction). Initiation of UX007 eliminated hypoglycemia events leading to hospitalization (from 11 pre-UX007 hospitalizations, 0.30 events/year vs. 0; p = 0.067) and intensive care unit (ICU) care (from 2 pre-UX007 ICU admissions, 0.05 events/year vs. 0; p = 0.161) and reduced cardiomyopathy events (3 events vs. 1 event; 0.07 to 0.02 events/year; 69.7% decrease). The majority of treatment-related adverse events (AEs) were mild to moderate gastrointestinal symptoms, including diarrhea, vomiting, and abdominal or gastrointestinal pain, which can be managed with smaller, frequent doses mixed with food.

Rare individuals with 20p11.2 proximal deletions have been previously reported, with a variable phenotype that includes heterotaxy, biliary atresia, midline brain defects associated with panhypopituitarism, intellectual disability, scoliosis, and seizures. Deletions have ranged in size from 277 kb to 11.96 Mb. We describe a newborn with a de novo 2.7 Mb deletion of 20p11.22p11.21 that partially overlaps previously reported deletions and encompasses FOXA2. Her clinical findings further expand the 20p11.2 deletion phenotype to include severe midline cranial and intracranial defects such as aqueductal stenosis with hydrocephalus, mesencephalosynapsis with diencephalic-mesencephalic junction dysplasia, and pyriform aperture stenosis. We also report one individual with a missense variant in FOXA2 who had abnormal glucose homeostasis, panhypopituitarism, and endodermal organ dysfunction. Together, these findings support the critical role of FOXA2 in panhypopituitarism and midline defects.

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.