Publications

2025

Kang, Minkyung, Ava Nasrollahi, Feng Cheng, and Yao Yao. (2025) 2025. “Screening and Identification of Brain Pericyte-Selective Markers”. CNS Neuroscience & Therapeutics 2025 Feb;31(2):e70247. doi: 10.1111/cns.70247. (2).

Background: Pericytes, a type of mural cells, exert important functions in the CNS. One major challenge in pericyte research is the lack of pericyte-specific and subpopulation-specific markers.

Methods: To address this knowledge gap, we first generated a novel transgenic mouse line in which vascular smooth muscle cells (vSMCs) are permanently labeled with tdTomato. Next, we isolated PDGFRβ+tdTomato- pericytes and PDGFRβ+tdTomato+ vSMCs from the brains of these mice and subsequently performed RNAseq analysis to identify pericyte-enriched genes.

Results: Using this approach, we successfully identified 40 pericyte-enriched genes and 158 vSMC-enriched genes, which are involved in different biological processes and molecular functions. Using ISH/IHC analysis, we found that Pla1a and Cox4i2 were predominantly enriched in subpopulations of brain pericytes, although they also marked some non-vascular parenchymal cells.

Conclusions: These findings suggest that Pla1a and Cox4i2 preferably label subpopulations of pericytes in the brain compared to vSMCs, and thus, they may be useful in distinguishing these populations.

Wood, Felix Nr, Katie Bowen, Rosemary Hartley, Jonathon Stevenson, Matt Warner, and Doug Watts. (2025) 2025. “Dive Medicine Capability at Rothera Research Station (British Antarctic Survey), Adelaide Island, Antarctica.”. Diving and Hyperbaric Medicine 55 (1): 67. https://doi.org/10.28920/dhm55.1.67.

In December, we published an article titled "Dive Medicine Capability at Rothera Research Station (British Antarctic Survey), Adelaide Island, Antarctica" by Wood FNR, Bowen K, Hartley R, et al. The corresponding author would like to include an additional author, as their contribution was significant but was inadvertently omitted in the initial online publication. While this correction has been made in several versions circulated by the journal, not all have been updated. As a result, we are issuing an errata. The title and abstract are as follows: (Wood FNR, Bowen K, Hartley R, Stevenson J, Warner M, Watts D. Dive medicine capability at Rothera Research Station (British Antarctic Survey), Adelaide Island, Antarctica. Diving and Hyperbaric Medicine. 2024 20 December;54(4):320-327. doi: 10.28920/dhm54.4.320-327. PMID: 39675740.) Rothera is a British Antarctic Survey research station located on Adelaide Island adjacent to the Antarctic Peninsula. Diving is vital to support a long-standing marine science programme but poses challenges due to the extreme and remote environment in which it is undertaken. We summarise the diving undertaken and describe the medical measures in place to mitigate the risk to divers. These include pre-deployment training in the management of emergency presentations and assessing fitness to dive, an on-site hyperbaric chamber and communication links to contact experts in the United Kingdom for remote advice. The organisation also has experience of evacuating patients, should this be required. These measures, as well as the significant infrastructure and logistical efforts to support them, enable high standards of medical care to be maintained to divers undertaking research on this most remote continent.

Cooper, Melissa L, Holly K Gildea, Maria Clara Selles, Eleni Katafygiotou, Shane A Liddelow, and Moses Chao V. (2025) 2025. “Astrocytes in the Mouse Brain Respond Bilaterally to Unilateral Retinal Neurodegeneration.”. Proceedings of the National Academy of Sciences of the United States of America 122 (11): e2418249122. https://doi.org/10.1073/pnas.2418249122.

Glaucomatous optic neuropathy, or glaucoma, is the world's primary cause of irreversible blindness. Glaucoma is comorbid with other neurodegenerative diseases, but how it might impact the environment of the full central nervous system to increase neurodegenerative vulnerability is unknown. Two neurodegenerative events occur early in the optic nerve, the structural link between the retina and brain: loss of anterograde transport in retinal ganglion cell (RGC) axons and early alterations in astrocyte structure and function. Here, we used whole-mount tissue clearing of full mouse brains to image RGC anterograde transport function and astrocyte responses across retinorecipient regions early in a unilateral microbead occlusion model of glaucoma. Using light sheet imaging, we found that RGC projections terminating specifically in the accessory optic tract are the first to lose transport function. Although degeneration was induced in one retina, astrocytes in both brain hemispheres responded to transport loss in a retinotopic pattern that mirrored the degenerating RGCs. A subpopulation of these astrocytes in contact with large descending blood vessels were immunopositive for LCN2, a marker associated with astrocyte reactivity. Together, these data suggest that even early stages of unilateral glaucoma have broad impacts on the health of astrocytes across both hemispheres of the brain, implying a glial mechanism behind neurodegenerative comorbidity in glaucoma.

Park, Sang-Won, Ju-Hui Park, Haneul Choi, Pureum Jeon, Seung-Hwan Lee, Won-Dong Shin, Hun-Joo Kim, Jin-A Lee, and Deok-Jin Jang. (2025) 2025. “Erratum To: Differential Roles of N- and C-Terminal LIR Motifs in the Catalytic Activity and Membrane Targeting of RavZ and ATG4B Proteins.”. BMB Reports 58 (2): 104.

[Erratum to: BMB Reports 2024; 57(11): 497-502, PMID: 39384175, PMCID: PMC11608851] The BMB Reports would like to issue a correction to an article published in BMB Rep. 57(11): 497-502, titled "Differential roles of N- and C-terminal LIR motifs in the catalytic activity and membrane targeting of RavZ and ATG4B proteins". The original acknowledgment contained incorrect grant information. This has now been corrected at the authors' request as follows: The work was supported by the Science Research Center Program of the National Research Foundation NRF (2020R1A5A1019023); Neurological Disorder Research Program of the NRF (2020M3E5D9079911); Basic research program of the NRF (2023R1A2C2007082) to JAL. D.-J.J. was supported by the Basic Research Program of NRF (2022R1F1A1066552), and the NRF grant funded by the Korea government (MSIT) (RS-2023-00218515). Specifically, the grant number has been updated from [2023R1A2C2008092] to [2023R1A2C2007082]. The authors apologize for any inconvenience or confusion this error may have caused. The ACKNOWLEDGEMENTS section in the original PDF version has been updated accordingly.