Publications

2025

Ruan, Jingsong, Minkyung Kang, Rong Wang, Wanling Xuan, Feng Cheng, and Yao Yao. 2025. “Screening and Identification of Muscle Pericyte Selective Markers”. Scientific Reports 15 (1): 28874.

Pericytes, which share markers with smooth muscle cells (SMCs), are heterogenous cells. Pericytes in the brain and skeletal muscle have different embryonic origins, representing distinct subpopulations. One challenge in the field is that there are no subpopulation-specific pericyte markers. Here, we compared the transcriptomes of muscle pericytes and SMCs, and identified 741 muscle pericyte-enriched genes and 564 muscle SMC-enriched genes. Gene ontology analysis uncovered distinct biological processes and molecular functions in muscle pericytes and SMCs. Interestingly, the Venn diagram revealed only one gene shared by brain and muscle pericytes, suggesting that they are indeed distinct subpopulations with different transcriptional profiles. We further validated that GSN co-localized with PDGFRβ+SMA cells in small and large blood vessels but not PDGFRβ+SMA+ cells, indicating that GSN predominantly marks pericytes and fibroblasts rather than SMCs in skeletal muscle. Negligible levels of GSN were detected in the brain. These findings indicate that GSN may serve as a selective marker for muscle pericytes.

Yao, Yao. 2025. “Laminin Receptors in the CNS and Vasculature”. Stroke 56 (8): 2348-59.

Laminin exerts a variety of important functions via binding to its receptors, including integrins and dystroglycan. With the advance in gene-targeting technology, many integrin/dystroglycan knockout/mutant mice were generated in the past 3 decades. These mutants enable loss-of-function studies and have substantially enriched our knowledge of integrin/dystroglycan functions. In this review, we summarize the functions of laminin receptors during embryonic development and in the central nervous system and vasculature. First, the biochemical properties of integrins and dystroglycan are briefly introduced. Next, we discuss loss-of-function studies on laminin receptors, including integrin-α3, integrin-α6, integrin-α7, integrin-β1, integrin-β4, and dystroglycan, focusing on embryonic development, the central nervous system, and vasculature. The phenotypes of compound knockout mice are described and compared with that of single mutants. Last, important questions and challenges in the field as well as potential future directions are discussed. Our goal is to provide a synthetic review on loss-of-function studies of laminin receptors in the central nervous system and vasculature, which could serve as a reference for future research, encourage the formation of new hypotheses, and stimulate new research in this field.

Nasrollahi, Ava, and Yao Yao. 2025. “Laminins and the Blood-Brain Barrier”. Matrix Biology 137: 33-41.

The blood-brain barrier (BBB) is a dynamic structure that maintains brain homeostasis. BBB breakdown is a key pathological hallmark of almost all neurological diseases. Although the regulation of BBB integrity by different cells has been extensively studied, the function of its non-cellular component-the basal lamina in BBB regulation remains largely unknown. Laminin, a trimeric protein with multiple isoforms, is one of the most important constituents of the basal lamina. In the CNS, different cells synthesize distinct laminin isoforms, which differentially regulate BBB integrity in both physiological and pathological conditions. A thorough understanding of laminin expression and function in BBB integrity could lead to the identification of novel therapeutic targets and potentially result in effective treatments for neurological disorders involving BBB disruption. Here in this review, we first briefly introduce the BBB and basal lamina with a focus on laminin. Next, we elucidate laminin expression and its function in BBB maintenance/repair in a cell-specific manner. Potential functional compensation among laminin isoforms is also discussed. Last, current challenges in the field and future directions are summarized. Our goal is to provide a synthetic review to encourage novel ideas and stimulate new research in the field.

Taskin, Irem Culha, and Yao Yao. 2025. “Immune Cells in Intracerebral Hemorrhage”. Brain Hemorrhages 6: 86-94.

Intracerebral hemorrhage (ICH), the deadliest form of stroke, is characterized by bleeding into brain parenchyma and formation of hematoma. Currently, there is no treatment available for ICH. Inflammatory response is a key pathology of ICH and plays a dual role in ICH---contributing to both secondary brain injury and recovery processes. This review discusses different types (both brain-resident and infiltrated) of immune cells and their functions during inflammation processes following ICH. Specifically, the temporal dynamics, polarization, and function of microglia/macrophages, neutrophils, lymphocytes, and astrocytes in ICH are summarized in a cell-specific manner. In addition, we also discuss key challenges and unanswered questions that need to be addressed in the future. A thorough understanding of the functions of different immune cells in ICH will provide a strong foundation for future studies and lead to the identification of novel cellular/molecular targets for therapeutic development.

Kang, Minkyung, Ava Nasrollahi, Feng Cheng, and Yao Yao. (2025) 2025. “Screening and Identification of Brain Pericyte-Selective Markers”. CNS Neuroscience & Therapeutics 2025 Feb;31(2):e70247. doi: 10.1111/cns.70247. (2).

Background: Pericytes, a type of mural cells, exert important functions in the CNS. One major challenge in pericyte research is the lack of pericyte-specific and subpopulation-specific markers.

Methods: To address this knowledge gap, we first generated a novel transgenic mouse line in which vascular smooth muscle cells (vSMCs) are permanently labeled with tdTomato. Next, we isolated PDGFRβ+tdTomato- pericytes and PDGFRβ+tdTomato+ vSMCs from the brains of these mice and subsequently performed RNAseq analysis to identify pericyte-enriched genes.

Results: Using this approach, we successfully identified 40 pericyte-enriched genes and 158 vSMC-enriched genes, which are involved in different biological processes and molecular functions. Using ISH/IHC analysis, we found that Pla1a and Cox4i2 were predominantly enriched in subpopulations of brain pericytes, although they also marked some non-vascular parenchymal cells.

Conclusions: These findings suggest that Pla1a and Cox4i2 preferably label subpopulations of pericytes in the brain compared to vSMCs, and thus, they may be useful in distinguishing these populations.

2024

Although oligodendrocytes (OLs) synthesize laminin-γ1, the most widely used γ subunit, its functional significance in the CNS remains unknown. To answer this important question, we generated a conditional knockout mouse line with laminin-γ1 deficiency in OL lineage cells (γ1-OKO). γ1-OKO mice exhibit weakness/paralysis and die by post-natal day 33. Additionally, they develop blood-brain barrier (BBB) disruption in the cortex and striatum. Subsequent studies reveal decreased major facilitator superfamily domain containing 2a expression and increased endothelial caveolae vesicles, but unaltered tight junction protein expression and tight junction ultrastructure, indicating a transcellular, rather than a paracellular, mechanism of BBB breakdown. Furthermore, significantly reduced OL lineage cells, OL precursor cells (OPCs), proliferating OPCs, and mature OLs are observed in γ1-OKO brains in a region-specific manner. Consistent with this finding, various defects in myelination are detected in γ1-OKO brains at biochemical and ultrastructural levels. Overall, these results highlight important roles of OL-derived laminin-γ1 in BBB maintenance and OL biology (proliferation, differentiation, and myelination).

Ruan, Jingsong, Minkyung Kang, Abhijit Nirwane, and Yao Yao. 2024. “A Dispensable Role of Mural Cell-Derived Laminin-α5 in Intracerebral Hemorrhage”. Journal of Cerebral Blood Flow and Metabolism.

Background

Mural cells synthesize and deposit laminin to the basement membrane. To investigate the function of mural cell-derived laminin, we generated a mutant mouse line lacking mural cell-derived laminin (termed PKO). In a previous study, we showed that the PKO mice were grossly normal under homeostatic condition, but developed blood-brain barrier (BBB) breakdown with advanced age (> 8 months), suggesting that these mutants are intrinsically weak. Based on these findings, we hypothesized that PKO mice have exacerbated injuries in pathological conditions.

Methods

Using collagenase-induced intracerebral hemorrhage (ICH) as an injury model, we examined various stroke outcomes, including hematoma volume, neurological function, neuronal death, BBB integrity, paracellular/transcellular transport, inflammatory cell infiltration, and brain water content, in PKO mice and their wildtype littermates at young age (6–8 weeks). In addition, transmission electron microscopy (TEM) analysis and an in vitro ICH model were used to investigate the underlying molecular mechanisms.

Results

Compared to age-matched wildtype littermates, PKO mice display aggravated stroke outcomes, including larger hematoma size, worse neurological function, increased neuronal cell death, enhanced BBB permeability, increased transcytosis, and elevated inflammatory cell infiltration. These mutants also exhibit high baseline brain water content independent of aquaporin-4 (AQP4). In addition, mural cell-derived laminin significantly reduced caveolin-1 without affecting tight junction proteins in the in vitro ICH model.

Conclusions

These results suggest that mural cell-derived laminin attenuates BBB damage in ICH via decreasing caveolin-1 and thus transcytosis, regulates brain water homeostasis, and plays a beneficial role in ICH.

Nirwane, Abhijit, Minkyung Kang, Aravinthan Adithan, Vrishni Maharaj, Felicia Nguyen, Elliot Santaella Aguilar, Ava Nasrollahi, and Yao Yao. 2024. “Endothelial and Mural Laminin-α5 Contributes to Neurovascular Integrity Maintenance”. Fluids and Barriers of the CNS.

Laminin-α5, a major component of the basal lamina, is predominantly synthesized by endothelial and mural cells (pericytes and vascular smooth muscle cells) in the CNS. Loss of laminin-α5 in either population fails to induce any abnormalities due to functional redundancy. Thus, the functional significance of laminin-α5 in neurovascular integrity remains unknown. Here, we hypothesize that ablation of laminin-α5 in both endothelial and mural cells increases neurovascular permeability.

Methods

The compound knockout mice were generated by crossing laminin-α5 floxed mice with Tie2-Cre and PDGFRβ-Cre, which target endothelial cells and mural cells, respectively. Neurovascular permeability in these mutants was determined with both exogenous and endogenous tracers. Endothelial paracellular and transcellular permeability was assessed by examining the expression of tight junction proteins and transcytosis-associated proteins. In addition, transmission electron microscopy (TEM) was used to visualize tight junction ultrastructure and endothelial caveolae vesicles. Defects in pericytes and astrocytes were investigated by examining pericyte coverage/contact and astrocyte polarity.

Results

Elevated neurovascular permeability was observed in the mutants. Subsequent studies found increased Caveolin-1 and decreased major facilitator superfamily domain-containing protein 2a (MFSD2A) expression, but unaltered Claudin-5 or zonula occludens-1 (ZO-1) expression. Consistent with these results, mutant mice exhibited increased endothelial caveolae vesicle number with intact tight junction structure under TEM. Additionally, pericyte coverage and contact were also decreased in the mutant mice, while astrocyte polarity was unaffected.

Conclusions

These results strongly indicate that endothelial and mural cell-derived laminin-α5 actively maintains neurovascular integrity via the transcellular rather than paracellular mechanism.

Kang, Minkyung, Abhijit Nirwane, Jingsong Ruan, Aravinthan Adithan, Marsilla Gray, Lingling Xu, and Yao Yao. 2024. “A Dispensable Role of Oligodendrocyte-Derived Laminin-A5 in Brain Homeostasis and Intracerebral Hemorrhage”. Journal of Cerebral Blood Flow and Metabolism.

Laminin, a major component of the basal lamina in the CNS, is also expressed in oligodendrocytes (OLs). However, the function of OL-derived laminin remains largely unknown. Here, we performed loss-of-function studies using two OL-specific laminin-α5 conditional knockout mouse lines. Both mutants were grossly normal and displayed intact blood-brain barrier (BBB) integrity. In a mouse model of intracerebral hemorrhage (ICH), control mice and both mutants exhibited comparable hematoma size and neurological dysfunction. In addition, similar levels of hemoglobin and IgG leakage were detected in the mutant brains compared to the controls, indicating comparable BBB damage. Consistent with this finding, subsequent studies revealed no differences in tight junction protein (TJP) and caveolin-1 expression among control and knockout mice, suggesting that neither paracellular nor transcellular mechanism was affected in the mutants. Furthermore, compared to the controls, both mutant lines showed comparable oligodendrocyte number, oligodendrocyte proliferation rate, MBP/MAG levels, and SMI-32 expression, highlighting a minimal role of OL-derived laminin-α5 in OL biology. Together, these findings highlight a dispensable role of OL-derived laminin-α5 in both brain homeostasis and ICH pathogenesis.