Diet is a key modulator of fecal microbiota composition and function. However, the influence of diet on the microbiota from toddlerhood to adolescence and young adulthood is less well studied than for infancy and adulthood. We aimed to complete a qualitative systematic review of the impacts of diet on the fecal microbiota of healthy humans 1-20 y of age. English-language articles, published after 2008, indexed in the PubMed/MEDLINE, Cochrane, Web of Science, and Scopus databases were searched using keywords and Medical Subject Headings terms. Quality assessment of included studies was conducted using the Quality Criteria Checklist derived from the Nutrition Evidence Library of the Academy of Nutrition and Dietetics. A total of 973 articles were identified through database searching and 3 additional articles were included via cross-reference. Subsequent to de-duplication, 723 articles were screened by title and abstract, of which 709 were excluded based on inclusion criteria established a priori. The remaining 14 studies were independently screened by 2 reviewers for final inclusion. Included studies were published between 2010 and 2019 and included 8 comparative cross-sectional studies, 4 cross-sectional studies, 1 randomized crossover study, and 1 substudy of a randomized 2-period crossover trial. Associations of a diet rich in indigestible plant polysaccharides with Prevotella, or with an enterotype dominated by this genus, often comprised of the species Prevotella copri, were observed. In addition, associations of a high-fat and -sugar diet with Bacteroides, or with an enterotype dominated by this genus, were observed predominantly in comparative cross-sectional and cross-sectional studies spanning the ages of 1-15 y. This review identified a gap in the literature for ages 16-20 y. In addition, randomized controlled trials for dietary intervention are needed to move from association-based observations to causal relations between diet and microbiota composition and function. This systematic review was registered at www.crd.york.ac.uk/prospero as CRD42020129824.
Publications
2021
Intestinal microbiota has emerged as an important player in the health and disease of preterm infants. The interactions between intestinal flora and epithelium can lead to local injury and systemic diseases. A suitable in vitro cell model is needed to enhance our understanding of these interactions. In this study, we exposed fetal epithelial cell cultures (FHs-74 int cells, human, ATCC CCL 241) to sterile fecal filtrates derived from stool collected from preterm infants at <2 and at 3 to 4 weeks of age. We measured the cytokine levels from the culture media after 4, 24, and 48 h of exposure to the fecal filtrates. We analyzed the 16S rRNA V4 gene data of the fecal samples and transcriptome sequencing (RNA-seq) data from the fetal epithelial cells after 48 h of exposure to the same fecal filtrates. The results showed correlations between inflammatory responses (both cytokine levels and gene expression) and the Proteobacteria-to-Firmicutes ratio and between fecal bacterial genera and epithelial apoptosis-related genes. Our in vitro cell model can be further developed and applied to study how the epithelium responds to different microbial flora from preterm infants. Combining immature epithelial cells and preterm infant stool samples into one model allows us to investigate disease processes in preterm infants in a way that had not been previously reported. IMPORTANCE The gut bacterial flora influences the development of the immune system and long-term health outcomes in preterm infants. Studies of the mechanistic interactions between the gut bacteria and mucosal barrier are limited to clinical observations, animal models, and in vitro cell culture models for this vulnerable population. Most in vitro cell culture models of microbe-host interactions use single organisms or adult origin cell lines. Our study is innovative and significant in that we expose immature epithelial cells derived from fetal tissues to fecal filtrates from eight stool samples from four preterm infants to study the role of intestinal epithelial cells. In addition, we analyzed epithelial gene expression to examine multiple cellular processes simultaneously. This model can be developed into patient-derived two- or three-dimensional cell cultures exposed to their own fecal material to allow better prediction of patient physiological responses to support the growing field of precision medicine.
Background: Preterm infants are exposed to different dietary inputs during their hospitalization in the neonatal intensive care unit (NICU). These include human milk (HM), with a human milk-based (HMF) or a bovine milk-based (BMF) fortifier, or formula. Milk consumption and the type of fortification will cause changes in the gut microbiota structure of preterm infants. This study aimed to characterize the gut microbiota of PT infant according to the type of feeding and the type of HM fortification and its possible association with infant's growth. Methods: Ninety-seven infants born ≤33 wks of gestation or <1,500 g were followed during the hospitalization period in the NICU after birth until discharge. Clinical and dietary information was collected, including mode of delivery, pregnancy complications, mechanical ventilation, use of antibiotics, weight, and type and amount of milk consumed. To characterize the gut microbiota composition, weekly stool samples were collected from study participants. The V3-V4 region of the 16S rRNA bacterial gene was Sequenced using Illumina MiSeq technology. Results: After birth, black maternal race, corrected gestational age (GA) and exposure to pregnancy complications, had a significant effect on gut microbial diversity and the abundance of Enterococcus, Veillonella, Bifidobacterium, Enterobacter, and Bacteroides. Over the course of hospitalization, corrected GA and exposure to chorioamnionitis remained to have an effect on gut microbial composition. Two different enterotypes were found in the gut microbiota of preterm infants. One enriched in Escherichia-Shigella, and another enriched in uncharacterized Enterobacteriaceae, Klebsiella and Clostridium sensu stricto 1. Overall, HM and fortification with HMF were the most common feeding strategies. When consuming BMF, PT infants had higher growth rates than those consuming HMF. Milk and type of fortification were significantly associated with the abundance of Clostridium sensu stricto 1, Bifidobacterium and Lactobacillus. Conclusions: This observational study shows the significant association between milk consumption and the exposure to HMF or BMF fortification in the fecal microbiota composition of preterm infants. Additionally, these results show the effect of other perinatal factors in the establishment and development of PT infant's gut microbiota.
2020
OBJECTIVE: Anemia and Proteobacteria-dominant intestinal dysbiosis in very low birth weight (VLBW) infants have been linked to necrotizing enterocolitis, a severe gut inflammatory disease. We hypothesize that anemia of prematurity is related to the development of intestinal dysbiosis.
STUDY DESIGN: Three hundred and forty-two weekly stool samples collected prospectively from 80 VLBW infants were analyzed for bacterial microbiomes (with 16S rRNA). Linear mixed-effects model was used to determine the relationships between the onsets of anemia and intestinal dysbiosis.
RESULTS: Hematocrit was associated with intestinal microbiomes, with lower Hct occurring with increased Proteobacteria and decreased Firmicutes. Infants with a hematocrit <30% had intestinal microbiomes that diverged toward Proteobacteria dominance and low diversity after the first postnatal month. The microbiome changes were also related to the severity of anemia.
CONCLUSIONS: This finding supports a potential microbiological explanation for anemia as a risk factor for intestinal dysbiosis in preterm infants.
Many very-low-birth-weight (VLBW) infants experience growth faltering in early life despite adequate nutrition. Early growth patterns can affect later neurodevelopmental and anthropometric potentials. The role of the dysbiotic gut microbiome in VLBW infant growth is unknown. Eighty-four VLBW infants were followed for six weeks after birth with weekly stool collection. DNA was extracted from samples and the V4 region of the 16S rRNA gene was sequenced with Illumina MiSeq. A similar microbiota database from full-term infants was used for comparing gut microbiome and predicted metabolic pathways. The class Gammaproteobacteria increased or remained consistent over time in VLBW infants. Out of 228 metabolic pathways that were significantly different between term and VLBW infants, 133 pathways were significantly lower in VLBW infants. Major metabolic differences in their gut microbiome included pathways involved in decreased glycan biosynthesis and metabolism, reduced biosynthetic capacity, interrupted amino acid metabolism, changes that could result in increased infection susceptibility, and many other system deficiencies. Our study reveals poor postnatal growth in a VLBW cohort who had dysbiotic gut microbiota and differences in predicted metabolic pathways compared to term infants. The gut microbiota in VLBW infants likely plays an important role in postnatal growth.
The objective of this commentary was to analyze the causes and outcomes of gut microbiome dysbiosis in preterm infants who are born at very low birth weight (VLBW). The intrauterine development of VLBW infants is interrupted abruptly with preterm birth and followed by extrauterine, health-threatening conditions and sequelae. These infants develop intestinal microbial dysbiosis characterized by low diversity, an overall reduction in beneficial and/or commensal bacteria, and enrichment of opportunistic pathogens of the Gammaproteobacteria class. The origin of VLBW infant dysbiosis is not well understood and is likely the result of a combination of immaturity and medical care. We propose that these factors interact to produce inflammation in the gut, which further perpetuates dysbiosis. Understanding the sources of dysbiosis could result in interventions to reduce gut inflammation, decrease enteric pathology, and improve health outcomes for these vulnerable infants.
2019
BACKGROUND: Premature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).
METHODS: Stool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.
RESULTS: We enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.
CONCLUSION: In premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution.
The microbiomes of 83 preterm very-low-birth-weight (VLBW) infants and clinical covariates were analyzed weekly over the course of their initial neonatal intensive care unit (NICU) stay, with infant growth as the primary clinical outcome. Birth weight significantly correlated with increased rate of weight gain in the first 6 weeks of life, while no significant relationship was observed between rate of weight gain and feeding type. Microbial diversity increased with age and was significantly correlated with weight gain and percentage of the mother's own milk. As expected, infants who received antibiotics during their NICU stay had significantly lower alpha diversity than those who did not. Of those in the cohort, 25 were followed into childhood. Alpha diversity significantly increased between NICU discharge and age 2 years and between age 2 years and age 4 years, but the microbial alpha diversity of 4-year-old children was not significantly different from that of mothers. Infants who showed improved length over the course of their NICU stay had significantly more volatile microbial beta diversity results than and a significantly decreased microbial maturity index compared with infants who did not; interestingly, all infants who showed improved length during the NICU stay were delivered by Caesarean section. Microbial beta diversity results were significantly different between the time of the NICU stay and all other time points (for children who were 2 or 4 years old and mothers when their children were 2 or 4 years old). IMPORTANCE Preterm infants are at greater risk of microbial insult than full-term infants, including reduced exposure to maternal vaginal and enteric microbes, higher rates of formula feeding, invasive procedures, and administration of antibiotics and medications that alter gastrointestinal pH. This investigation of the VLBW infant microbiome over the course of the neonatal intensive care unit (NICU) stay, and at ages 2 and 4 years, showed that the only clinical variables associated with significant differences in taxon abundance were weight gain during NICU stay (Klebsiella and Staphylococcus) and antibiotic administration (Streptococcus and Bifidobacterium). At 2 and 4 years of age, the microbiota of these VLBW infants became similar to the mothers' microbiota. The number of microbial taxa shared between the infant or toddler and the mother varied, with least the overlap between infants and mothers. Overall, there was a significant association between the diversity and structure of the microbial community and infant weight and length gain in an at-risk childhood population.
2018
BACKGROUND: Preterm infants are at risk of developing intestinal dysbiosis with an increased proportion of Gammaproteobacteria. In this study, we sought the clinical determinants of the relative abundance of feces-associated Gammaproteobacteria in very low birth weight (VLBW) infants. Fecal microbiome was characterized at ≤ 2 weeks and during the 3rd and 4th weeks after birth, by 16S rRNA amplicon sequencing. Maternal and infant clinical characteristics were extracted from electronic medical records. Data were analyzed by linear mixed modeling and linear regression.
RESULTS: Clinical data and fecal microbiome profiles of 45 VLBW infants (gestational age 27.9 ± 2.2 weeks; birth weight 1126 ± 208 g) were studied. Three stool samples were analyzed for each infant at mean postnatal ages of 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. The average relative abundance of Gammaproteobacteria was 42.5% (0-90%) at ≤ 2 weeks, 69.7% (29.9-86.9%) in the 3rd, and 75.5% (54.5-86%) in the 4th week (p < 0.001). Hierarchical and K-means clustering identified two distinct subgroups: cluster 1 started with comparatively low abundance that increased with time, whereas cluster 2 began with a greater abundance at ≤ 2 weeks (p < 0.001) that decreased over time. Both groups resembled each other by the 3rd week. Single variants of Klebsiella and Staphylococcus described variance in community structure between clusters and were shared between all infants, suggesting a common, hospital-derived source. Fecal Gammaproteobacteria was positively associated with vaginal delivery and antenatal steroids.
CONCLUSIONS: We detected a dichotomy in gut microbiome assembly in preterm infants: some preterm infants started with low relative gammaproteobacterial abundance in stool that increased as a function of postnatal age, whereas others began with and maintained high abundance. Vaginal birth and antenatal steroids were identified as predictors of Gammaproteobacteria abundance in the early (≤ 2 weeks) and later (3rd and 4th weeks) stool samples, respectively. These findings are important in understanding the development of the gut microbiome in premature infants.
2017
Cytokines and growth factors play diverse roles in the uninflamed fetal/neonatal intestinal mucosa and in the development of inflammatory bowel injury during necrotizing enterocolitis (NEC). During gestational development and the early neonatal period, the fetal/premature intestine is exposed to high levels of many "inflammatory" cytokines and growth factors, first via swallowed amniotic fluid in utero and then, after birth, in colostrum and mother's milk. This article reviews the dual, seemingly counter-intuitive roles of cytokines, where these agents play a "trophic" role and promote maturation of the uninflamed mucosa, but can also cause inflammation and promote intestinal injury during NEC.